

5G New Radio in mmWave Spectrum Bands

June 2nd, 2017

Summary

- Nokia is fully committed to 5G @ bands below 52.6GHz (3GPP Phase 1)
- Nokia also sees value in 5G @ 70/80 GHz (part of 3GPP Phase 2)
 - 10 GHz of spectrum available worldwide and under study in ITU
 - Use 2 GHz of BW can meet 3GPP requirements
 - > 10 Gbps Peak Rate
 - > 100 Mbps of cell edge rate
- Higher mmWave Spectrum is no different than lower mmWave spectrum:
 - Similar channel models
 - Higher pathloss can be mitigated by using large number of antenna elements
 - Marginal performance difference between high and low mmWave bands
 - Many similarities in RFIC technology between higher and lower mmWave bands
- Feasibility:
 - Nokia has demonstrated 70 GHz PoC with multiple features
 - Nokia has addressed co-existence issues with existing backhaul links

5G New Radio- 3GPP Timeline

3GPP Agreed Release 15 WI 5G timeline

NSA = Non StandAlone = EPC core ("Option 3") & LTE anchor SA = StandAlone

5G (New Radio) Schedule in 3GPP (Release 16/17 schedule TBC)

Summary of 5G RAN prioritization

Phase 1 WI (Rel-15)

- Main assumption: general support for stand-alone NR below 40GHz (option 2 scenario) including DC
- 4G-5G interworking
- MIMO/Beamforming (fundamental features)
- Mini-slot (note: enabler for URLLC and ensures forward compatibility)
- Public warning/emergency alert (for regulatory needs)
- SON functionality for Dual Connectivity
- RRC inactive data

Phase 1 SI (Rel-15)

- Unlicensed spectrum
- URLLC (below 40GHz)
- Non-orthogonal multiple access
- Location/positioning functionality (for regulatory needs)
 - Indoor/Outdoor
- New SON functionality
- Sidelink (use cases out of reach of LTE evolution)
- NR-Wi-Fi interworking
- Integrated Access Backhaul
- Non-terrestrial networks
- eV2V evaluation methodology

Phase 2 WI (Rel-16)

- Potential enhancements for eMBB support below 40GHz
- URLLC (below 40GHz)
- 4G-5G interworking remaining options
- Shared spectrum and 5GHz unlicensed spectrum
- Location/positioning functionality (for regulatory needs)
- MIMO enhancements

Note: some Phase 1 SIs might belong to Phase 2 WI as well (not shown here explicitly)

Phase 2 SI (Rel-16)

- mMTC
- Waveforms for >40GHz
- URLLC for >40GHz
- MIMO for >40GHz
- Multi-connectivity (for >2 nodes)
- Uplink based mobility
- 2-step RACH
- TX interference coordination
- V2V and V2X (use cases out of reach of LTE evolution)
- NAICS

- Multimedia Broadcast/Multicast Service
- Air-to-ground and light air craft communications
- Extreme long distance coverage
- Satellite communication
- Other verticals
- 60GHz unlicensed spectrum

FCC mmWave Spectrum Allocation

5G New Radio- mmWave Challenges and Peak Rates

5G mmWave Challenges & Proof Points

Unique difficulties that a mmWave system must overcome

- Increase path loss which is overcome by large arrays (e.g., 4x4 or 8x8)
- Narrow beamwidths, provided by these high dimension arrays
- High penetration loss and diminished diffraction

Two of the main difficulties are:

- Acquiring and tracking user devices within the coverage area of base station using a narrow beam antenna
- Mitigating shadowing with base station diversity and rapidly rerouting around obstacles when user device is shadowed by an opaque obstacle in its path

Other 5G aspects a mmWave system will need to address:

- High peak rates and cell edge rates (>10 Gbps peak, >100 Mbps cell edge)
- Low-latency (< 1ms)

5G Peak Rates

- 4G achieved 10-15% of the target bit rate in the first deployment and the full target four years later.
- Extrapolating to 5G would give 5 Gbps by 2020 and 50 Gbps by 2024

5G mmWave: Channel Models

UMi Large-scale Propagation Model: Path loss / Shadow Fading (Example)

- Pathloss model based on multiple measurement campaigns
 - LoS model well matched to Friis' free-space path loss model
 - NLoS model path loss slope range (n/ $\alpha \approx 3\sim4$) similar to lower-band, below 6 GHz
- Pathloss difference between higher and lower frequencies can be compensated by using larger number of antenna elements

Single-slope Baseline Path loss Model (LoS / NLoS)

Closed-in Ref-d0 (CI) Model: $PL(d)[dB] = 10 \ n \log_{10}(d \ [m]/d_0) + 32.45 + 20 \log_{10}(f_c \ [GHz]) + \chi_{\sigma}(d) \ (d_0 = 1 \text{m})$

α-β-γ Mode : $PL(d)[dB] = 10 α \log_{10}(d [m]) + β + 10 γ \log_{10}(f_c [GHz]) + χ_σ(d)$

Single-Slope Path loss Model			CI mod	Baseline el (LoS), Cl	Valid freq. [GHz]	Validity dist. [m]		
			n (CI) / α	β [dB]	Υ	σ sF [dB]	[min ~ max]	[min ~ max]
Street Canyon	LoS		2.1	N/A		3.76		5~221
	NLoS	CI	3.17	IN,	/A	8.09	2 ~ 73	10~959
		ABG	3.53	22.4	2.13	7.82		10~333
Open Square	LoS		1.85	N/A		4.2		6~88
	NLoS	CI	2.89	- IN		7.1	2 ~ 60	8~605
		ABG	4.14	3.66	2.43	7.0		0~003

Phased Array Technology

Basic technologies vs. band of operation

		3.5 GHz	15 GHz	28 GHz	38 GHz	60 GHz	73 GHz	83 GHz	94 GHz
Wavelength	mm	86	20	11	7.9	5.0	4.1	3.6	3.2
Row/column	#	8	8	8	8	8	8	8	8
Total	#	64	64	64	64	64	64	64	64
Width/Height	mm	342.9	80.0	42.9	31.6	20.0	16.4	14.5	12.8
Technology		T/R Module using Mech array assembly	Monolithic T/R Modules on Interposer	T/R Modules or MMIC on Interposer	T/R Modules or MMIC on Interposer	1 or more MMIC on Interposer board	Multiple MMICs , chip-scale antenna or interposer	Multiple MMICs , chip-scale antenna or interposer	Multiple MMICs using chip scale antenna

PA, LNA, phase shifter, VGA and T/R diplexing mechanically assemble into phased array. MMIC solutions preferred

Migrate to MMIC as frequency increases to reduce cost and improve manufacture Transition region where either scalable MMIC or T/R module approach may be viable

Silicon Image 60GHz MMIC on LTCC interposer board with antenna array

Transition region for interposer board vs. wafer-scale antennas

Circuits same size as antenna array.(UCSD 94GHz Chip Scale Ant array)

^{*} MMIC = Monolithic Microwave Integrated Circuit

Device Technology for 28/39 GHz vs. 71/81 GHz

Many Similarities

All are high frequency bands with small wavelengths

All need highly integrated, MMIC based arrays of antennas to increase aperture size

Modern SiGe and CMOS semiconductors are fast and getting faster

- They provide sufficiently fast transistors for usable gain in all these bands
- E-Band devices can have slightly lower gain and higher NF and phase noise than in K/Ka band devices, their performance is remains acceptable

Fig. 2. Measured speed of CMOS and SiGe transistors

Packaging losses are manageable in all bands

- Higher loss at higher frequency (due to more wavelengths in the same material) is offset by smaller antenna element spacing and thus shorter distances from die to antenna
- Lower frequencies may benefit from hybrid semiconductor solutions and have an easier path to dual-polarized arrays
- While higher frequencies offer opportunities for highly integrated large scale arrays and low cost wafer-scale antenna fabrication

[1] "Driving Towards 2020: Automotive Radar Technology Trends", J. Hasch, 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility [2] "60-GHz 64- and 256-Elements Wafer-Scale Phased-Array Transmitters Using Full-Reticle and Subreticle Stitching Techniques", G. Rebeiz, et. Al., IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, DEC 2016

with on-chin antenna feed

System Level Simulation Results

Antenna Array Comparisons - Number of Elements Constant vs. Frequency

5dBi ant element gain, 7dBm AP Pout per element, 1dBm UE Pout per element, shown to scale

52% area relative to 28GHz

Max EIRP ≈ 36.1 dBm 15% area relative to 28GHz

System Simulation Results for the Suburban Micro Environment

Constant Number Antenna Elements for 28 GHz, 39 GHz and 73 GHz

System Simulation Results for the Suburban Micro Environment (Heavy Foliage)

Constant Number Antenna Elements for 28 GHz, 39 GHz and 73 GHz

Antenna Array Comparisons - AP Antenna Aperture Constant vs. Frequency

5dBi ant element gain, 7dBm AP Pout per element, 1dBm UE Pout per element, shown to scale

Max EIRP ≈ 72.2 dBm 59% area relative to 28GHz Room to grow...normalized array size is ~4.5dBm more than above

39 GHz, 32 elements, (4x4x2)

Max FIRP ≈ 36 1 dBm 52% area relative to 28GHz 73 GHz, 32 elements, (4x4x2)

Max EIRP ≈ 36.1 dBm 15% area relative to 28GHz

NOKIA

UE 2 TXRUs

28 GHz, 32 elements, (4x4x2)

19 © Nokia 2017

Max EIRP ≈ 36.1 dBm

System Simulation Results for the Suburban Micro Environment

Constant Antenna Aperture for 28 GHz, 39 GHz and 73 GHz

System Simulation Results for the Suburban Micro Environment (Heavy Foliage)

Constant Antenna Aperture for 28 GHz, 39 GHz and 73 GHz

System Simulation Results

Summary

- Antenna array size will decrease for given array configuration and number of elements
 - Reduced antenna aperture is the primary reason for decreasing performance with higher frequency
 - Little degradation is seen at 100m ISDs as systems are not path loss limited
 - Some degradation is seen for larger ISDs as systems become more noise limited
- Keeping antenna aperture constant can mitigate differences at higher frequencies
 - Increasing the number elements as frequency increases will keep the physical array size and antenna aperture constant
 - Performance is nearly identical at all frequencies and ISDs with constant physical array size (antenna aperture)
 - Slight improvements in downlink performance if power per element is held constant as number of elements is increased
- Foliage poses challenges at all mmWave frequencies and is not dramatically higher at 70 GHz as compared to 28 GHz or 39 GHz

Co-existence of Access and Backhaul

Fixed Service Backhaul-5G Coexistence at 70/80 GHz

- Existing terrestrial licensees have used the spectrum band solely for fixed services, including backhaul
- Coexistence of 5G with Fixed Links was studied.
- Effective Mitigation Techniques like shutting down the 5G AP beam(s) responsible for interference at the fixed node were investigated.

Orientation of Fixed link and 5G sectors

Fixed links surrounding 5G

Nokia's PoC @ 70 GHz

Nokia 5G mmWave beam tracking demonstrator (70 GHz)

Summary: Why 5G @ 70 and 80 GHz Band

- 10 GHz of Spectrum available worldwide and under study in ITU
 - Use 2 GHz of BW can meet 3GPP requirements
 - > 10 Gbps Peak Rate
 - > 100 Mbps of cell edge rate
- Higher mmWave Spectrum is no different than lower mmWave spectrum:
 - Similar channel models
 - Higher pathloss can be mitigated by using large number of antenna elements
 - Marginal performance difference between high and low mmWave bands
 - Many similarities in RFIC technology between higher and lower mmWave bands

- Feasibility:
 - Nokia has demonstrated 70 GHz PoC with multiple features
 - Nokia has addressed co-existence issues with existing backhaul links

NOKIA